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ABSTRACT 
A novel Eigenstructure Assignment (ESA) method for 

vibration confinement of flexible structures has been 
developed. This method is an output feedback control and 
determines the closed-loop systems that their eigenvectors are 
orthogonalized to the open-loop eigenvectors. This method is 
a numerical method and used Singular Value Decomposition 
(SVD) to find the null space of the closed-loop eigenvectors. 
The matrix that spans the null space can be used to regenerate 
the open-loop system as well as the systems that have 
orthogonal eigenvectors to the regenerated open-loop system. 
As a result the isolation of vibration is independent of the type 
of the disturbance. Also in this method, the energy of the 
closed-loop system is minimized. As an important outcome, 
the proposed method needs neither to specify the closed-loop 
eigenvalues nor to define a desired set of eigenvectors. 

 
INTRODUCTION 
 The idea of Eigenstructure Assignment (ESA) is 
given by Moore [1]. He characterized the class of all 
eigenvector sets related to a distinct set of closed-loop 
eigenvalues using state feedback [2]. Therefore, a control 
problem of eigenvalue placement for a MIMO system which 
had been introduced earlier by Wonham [3], had been 
redefined to both placement of eigenvalues in desired 
locations and choosing a set of the associated eigenvectors 
from a class of possible eigenvectors. 
 

It was Cunningham who first used Singular Value 
Decomposition (SVD) to find the null space for the achievable 
eigenvector sub-space. In his output feedback control method, 
the basis vectors were optimally combined to minimize the 

error between achievable and desirable eigenvectors. This 
method was the first practical method of eigenstructure 
assignment in order to have a desirable transient response 
behavior [4]. Using  SVD, a finite number of actuators are 
needed to shape the eigenvectors of the system [5]. 

 
Shelly et al studied the absolute displacement in first 

and second order systems, because the existing eigenstructure 
assignment would not have a control on them. They showed 
that it is not possible to tell if the absolute displacements in a 
system are increased, decreased or remained intact just by 
changing the system’s eigenvectors [6]. Furthermore, they 
introduced a mode localization technique called eigenvector 
scaling while studying the time domain response of the 
system. This method changes specific elements of each 
eigenvector in order to uniformly decrease the relative 
displacement of the corresponding areas in the system [7]. 
They showed analytically that absolute displacements in 
isolated areas can be reduced by eigenvector shaping, 
regardless of the type of the disturbance. Some experimental 
results of eigenvector shaping have been reported in [2, 8, 9]. 
The eigenstructure shaping method is an active control 
method and is basically regenerating the behavior of the 
system when passive mode localization happens, by scaling 
and reforming part or all of the system mode shapes. Since all 
the shape modes are scaled in the same way, vibration 
confinement of the system is not affected by the type of 
disturbance. An application of this method is also reported in 
[10]. One of the drawbacks of the uniform scaling is that the 
number of needed actuator/sensor that has to be equivalent to 
the number of coupled modes of the system. It means that the 
action between neighboring systems has the key role in the 
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number of actuators/sensors that are needed. SVD-eigenvector 
shaping has been introduced and used as a solution to the 
problem of limited actuators/sensors [11]. This method uses a 
Moore-Penrose generalized left inverse and produces the 
closest eigenvector in least square sense to the desired ones, 
since it gives the minimum Euclidean 2-norm error. This 
method allows use of fewer pairs of actuators and sensors than 
previous methods [11]. 

 
An active-passive hybrid vibration confinement 

system using piezoelectric network actuators has been 
proposed by Tang et al  [12, 13]. Instead of the mechanical 
parts, the passive elements of the systems are the circuit 
inductors and resistors. This method finds optimal 
eigenvectors using a Rayleigh principle by minimizing the 
ratio of modal energy at the concerned area to the modal 
energy of the whole structure using an auxiliary eigenvalue 
problem. Therefore the need for pre-selecting the closed-loop 
eigenvectors is eliminated and the problem of closeness of the 
desired and achievable eigenvectors does not exist. A case 
study of this method has been presented in [14] 

 
Pre-determination of the desired eigenvector 

components can cause unsatisfactory performance if a match 
between components of the desired and achievable 
eigenvectors happens in the unimportant degrees of freedom 
[12, 13]. Considering the problem of movement of 
neighborhood of the closed-loop eigenvalues, an 
eigenstructure method for constrained state or output feedback 
has been presented by Slater et al [15]. They showed when the 
eigenvectors are the only parameters that are required to be 
changed, the control efforts are not necessarily minimized if 
the closed-loop eigenvalues are being forced to be close to the 
open-loop eigenvalues. In fact, a large change in eigenvectors 
may need a large movement of the eigenvalues to minimize 
the feedback gains. They also showed that closed-loop 
eigenvalues and eigenvectors have to be consistent in order to 
avoid the large control efforts. Also, they proposed that since 
there is no method to have closed-loop eigenvectors and 
eigenvalues consistent, the minimum number of constraints 
should be imposed to the eigenvectors’ elements in order to 
have a reasonable control effort. 

 
The minimum modal energy eigenstructure 

assignment proposed in this literature addresses this problem. 
This novel method does not require specifying the locations 
for the closed-loop eigenvalues. Moreover, it does not need 
defining a desirable eigenvector. The closed-loop system has 
eigenvalues consistent with the closed-loop eigenvectors 
which are different from the open-loop eigenvalues. 

 
This numerical eigenstructure assignment procedure 

uses an output feedback for controlling vibrations in flexible 
structures and is based on finding the closed-loop 
eigenstructures such that their eigenvectors are orthogonal to 

the open-loop eigenvectors. Almost all of the known 
eigenstructure assignment methods require a pre-
determination of the eigenstructure or at least eigenvectors. A 
prior knowledge of the desired closed-loop system behavior in 
terms of the elements of its eigenvectors is not an easy task 
and from a practical point of view is very challenging. 
Predicting a desirable shape for the eigenvectors of a 
complicated system does not have a straightforward 
procedure. Especially, for the continuous system, increasing 
the model degrees of freedom makes the task of defining the 
desirable shape for eigenvectors even harder. Therefore the 
degrees of freedom of the models need to be kept as low as 
possible. The proposed method does not need a pre-
determination of the closed-loop eigenstructure so a prior 
knowledge of the closed-loop system is not required. The 
flexibility of the available eigenstructure assignment methods 
which required designers to specify the desired closed-loop 
eigenvectors leads to an error caused by the difference 
between the desirable and admissible eigenvectors.  The new 
method finds the admissible eigenvectors for the closed-loop 
system which are orthogonal to the open-loop eigenvectors. 
Therefore, there is virtually no limitation on the number of 
pairs of actuators and sensors as well as the model itself. Since 
the eigenvectors of the closed-loop system are admissible 
eigenvectors and also the closed-loop eigenvalues are 
consistent with them, the actuation forces are prevented to be 
large. 

 
This new method is based on proving an interesting 

property in the null space generated by Singular Value 
Decomposition (SVD). The upper part of the matrix that spans 
the null space is known as the basis for the eigenvectors of the 
closed-loop system. This sub-matrix has the same row 
dimension as state matrix of the system does. Multiplying the 
conjugate transpose of this matrix to itself is basically the 
norm of the eigenvectors of the closed-loop system. This 
matrix product can be expressed as the modal energy of the 
system as well. This product has a unique property that its 
eigenvalues are zero and one. Zero eigenvalues for this matrix 
means zero modal energy. Using this property, the open-loop 
system can be regenerated by eigenvectors associated with the 
unity eigenvalue, and the eigenvectors associated with zero 
eigenvalues generate the closed-loop systems with 
eigenvectors orthogonal to the open-loop ones.  
 
EIGENSTRUCTURE ASSIGNMENT PROBLEM 
DEFINITION  

Consider the closed-loop equation of motion for a 
linear first order system  

 
{ } { } { }[ ] [ ]x A BKC x E f= + +    (1) 

where[ ]A  is the 2 2n n×  state matrix, [ ]B is the 2n m×  
input matrix, [ ]C is the 2m n×  output matrix, [ ]E is the  
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disturbance input matrix with 2n  rows. { }f  is the 

disturbance vector. [ ]K  is m m× feedback gain 

matrix.{ }x is the 2 1n×  state vector and its time derivative is 

{ }x . The first n  elements of the state vector are 

displacements and the last n  elements are the velocities of the 
associated second-order system.  
  

To eliminate the effect of the disturbance { }f in the 

isolated area, a control gain matrix[ ]K  has to be found. The 
general eigenstructure assignment definition is to solve the 
following eigenvalue problem simultaneously for [ ]K and iφ  
 

[ | ] 0 1,..., 2i
i

i

A I B i n
KC
φ

λ
φ

⎧ ⎫
− = =⎨ ⎬

⎩ ⎭
 (2) 

 
where iφ is the closed-loop eigenvectors of the system. iλ is,  

generally, the closed-loop eigenvalues associated with iφ , but 
in the proposed method is the open-loop eigenvalues and are 
called the operating eigenvalues. Also I is a 2 2n n×  

identity matrix. Obviously the vector i

iKC
φ
φ

⎧ ⎫
⎨ ⎬
⎩ ⎭

 is in the null 

space of the matrix [ | ]i iS A I Bλ λ= − . The null space of 

iSλ can be determined by applying SVD to iSλ ,  
 

*[ | ] [ ][ | 0][ ]i i i i iS A I B U Vλ λ= − = Σ  (3) 
 
[ ]iU  and [ ]iV are the left and right orthonormal matrices 

respectively. *[ ]iV is the conjugate transpose of the complex 

matrix[ ]iV . [ ]iV  can be partitioned as 
 

11 2 2 12 2
(2 ) (2 )

21 2 22

[ ] [ ]
[ ]

[ ] [ ]

i i
n n n m

i n m n m i i
m n m m

V V
V

V V
× ×

+ × +
× ×

⎡ ⎤
= ⎢ ⎥
⎣ ⎦

 (4) 

 
It is known that the second column block of the [ ]iV  

spans the null space of the iSλ . Any linear combination of m  

columns of 12[ ]iV   is an admissible eigenvector of the closed-
loop system. Different methods have different approaches to 
find ir . If ir  is determined, the desirable eigenvectors of the 
system is 
 

{ }12[ ]a i i
i V rφ =      (5) 

 
and the corresponding control gain matrix[ ]K  is determined 
by 
 

{ }22[ ]a i i
iKC V rφ =     (6) 

 
The proposed method uses the open-loop eigenvalues 

as operating eigenvalues and regenerates the open-loop 
system. At the same time it finds the space of all the 
eigenvectors that are orthogonal to the open-loop 
eigenvectors. Choosing the appropriate closed-loop 
eigenvectors leads to the appropriate gains needed for control 
system. Obviously, the closed-loop eigenvalues will be 
consistent with the closed-loop eigenvectors and do not have 
necessarily any relation to the open-loop eigenvalues. 
Therefore the proposed method does not need defining neither 
closed-loop eigenvalues nor eigenvectors. 

 
MINIMUM MODAL ENERGY EIGENSTRUCTURE 
ASSIGNMENT BY MODE ORTHOGONALIZING   

Using the achievable eigenvector definition, 

{ }12[ ]a i i
i V rφ = , The modal energy of the closed-loop system 

corresponding to the i th eigenvector of the closed-loop 
system can be written as 
 

* *
12 12

i i i i
iE r V V r=     (7) 

 
The goal is to find a minimum level of modal energy 

corresponding to a concerned eigenvalue. Considering the null 
space of the eigenvectors associated with the operating 
eigenvalue iλ  

12

22

[ ]
[ ]

i
i

i

V
V

⎧ ⎫
= ⎨ ⎬
⎩ ⎭

      (8) 

 
Norm of i  is equal to one since i  is the basis for 

the null space. 
2

1i = . Therefore any row block of  has 

a norm of less than 1. So the magnitudes of their singular 
values belong to the interval[0 1] [16]. 
 

12[ ] 1iV ≤ , * * *
12[ ]i i i iV U S V= and [0 1]iS ⊆  (9) 

   
Also, since 12[ ]iV is a complex matrix, *

12 12[ ] [ ]i iV V  is 
a Hermitian matrix. So,  
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2* * * * *
12 12[ ] [ ]i i i i i i i i i i i iV V U S S U U S U U U= = = Λ (10) 

 
where iΛ is the matrix of eigenvalues and iU  is the matrix of 

eigenvectors of  *
12 12[ ] [ ]i iV V . Equation (10) shows that the 

eigenvalues of *
12 12[ ] [ ]i iV V  belong to the interval [0 1] , 

since the absolute values of the singular values of iS  belong 
to this interval. 
 

It can be shown that *
22 22[ ] [ ]i iV V  has the same 

eigenvectors as *
12 12[ ] [ ]i iV V  but its eigenvalues are different. 

More precisely, the summation of the eigenvalues of 
*

12 12[ ] [ ]i iV V  and *
22 22[ ] [ ]i iV V associated with similar 

eigenvectors are unity.  
 

Theorem:  
Consider a 2n m×  non-square matrix iSλ , 2n m≥  

and.  The null space of this matrix is spanned by the columns 
of a (2 )n m m+ ×  matrix i . 12

iV  is the upper 2n m× sub-

matrix of i  and 22
iV is the lower m m× sub-matrix of i . 

*
12 12
i iV V  and *

22 22
i iV V  have identical  m m×  eigenvector 

matrices and the summation of their ordered eigenvalue 
matrices is an m m×  identity matrix. 
 
Proof: 

From equation (8) it can be written  
 

*
i i I=      (11) 

 
which can be expanded as 
 

* *
12 2 2 12 2 2 22 22[ ] [ ] [ ] [ ]i i i i

n n n n m m m mV V V V I× × × ×+ =  (12) 
 

Equation (12) can be re-written using an eigenvalue 
decomposition of the left hand side Hermitian matrices. 
 

* *( ) ( )i i i i i i
w w wU U U U IΛ + Λ =    (13) 

 
where i

wΛ  and i
wU  are the eigenvalue and eigenvector 

matrices of *
22 22[ ] [ ]i iV V . Pre-multiplying the aforementioned 

equation by *iU  and post multiplying by iU , 
* * *( )i i i i i i i i

w w wU U U U U IU IΛ + Λ = =   (14) 
 
which is equivalent to 

 
* * *( )( )( )i i i i i i

w w wU U U U IΛ = −Λ   (15) 
 
The left hand side of the equation is basically an eigenvalue 
decomposition of the diagonal matrix iI −Λ . But the 
eigenvalue matrix of a diagonal matrix is the matrix itself. So 
 

i i
w IΛ = −Λ      (16) 

 
or 
 

i i
w IΛ +Λ =      (17) 

 
Also equation (15) holds if  
 

*i i
wU U I=      (18) 

 
which concludes 
 

i i
wU U=      (19) 

 
Using the theorem result and considering i

wΛ  the 

eigenvector matrix of *
22 22[ ] [ ]i iV V , it can be written 

 
* *

22 22[ ] [ ]i i i i i
m m m m wV V U U× × = Λ    (20) 

 
where i

wΛ satisfies equation (17). 
 

Equation (10), the eigenvalue decomposition 
of *

12 12[ ] [ ]i iV V , can be rewritten as 
 

* *
12 12[ ] [ ]i i i i iU V V U = Λ     (21) 

 
Choosing the eigenvalue equal to unity from iΛ and 

its corresponding eigenvector i
JU , it can be seen that 

  
* *

12 12[ ] [ ] 1i i i i
J JU V V U =     (22) 

 
But i

JU  is associated with zero eigenvalue of i
wΛ .  

 
* *

22 22([ ] [ ]) 0i i i i
J JU V V U =    (23) 

Equation (23) holds if  
 

22[ ] 0i i
JV U =      (24) 
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which can be used to find the associated gain matrix. 
 

22 22[ ] [ ] 0a i i i i
i JKC V r V Uφ = = =    (25) 

 
Equation (25) means the gain matrix K  becomes 

zero. Since there is no control gain, the open-loop system has 
been regenerated. Therefore 12[ ]i i

JV U  is the eigenvector 
corresponding to the operating eigenvalue of the open-loop, 
since its norm is one and the gain associated with this 
eigenvector is zero. 
 

The j th non-unity eigenvalue of *
12 12[ ] [ ]i iV V  , i

jλ , 

is several order of magnitudes smaller than unity. i
jU  , the 

eigenvectors associated with i
jλ , is j th column of 

eigenvector matrix iU . If i
jU  is substituted as ir the 

following equation can be concluded  
 

* *
12 12[ ] [ ] 0i i i i i

jr V V r λ= ≅    (26) 

 
Comparing equation (26) to the modal energy 

equation (7), it can be concluded that for the coefficient 
vector i i

jr U= , the modal energy of the i th mode is 

minimum 0iE ≅ .     
    

Appending all the calculated closed-loop 
eigenvectors for all the modes that have been calculated, the 
following matrices can be written 
 

1 1
12 12[ ] [ ]m mV V r V r⎡ ⎤= ⎣ ⎦    (27) 

1 1
22 22[ ] [ ]m mW V r V r⎡ ⎤= ⎣ ⎦    (28) 

 
Feedback gain matrix K  is 

 
1( )K W CV −=      (29) 

 
The state matrix for the closed-loop system is defined 

as 
 

cA A BKC= +      (30) 
 

Since the actuators and sensors are collocated, the 
matrix product BKC  has zero elements on its diagonal and its 
trace is zero. As a result the summations as well as the average 
of the eigenvalues for the open-loop and closed-loop systems 
are equal. 

 
Since the system has m inputs, there are m different 

modes that their null space has to be found. Also 
*

12 12[ ] [ ] 1i iV V i m=  has m different eigenvectors that can 

be used as the coefficient vector ir . Excluding the case that 
the open-loop system has been regenerated, there are 

1mm − options for minimum modal energy ESA. The best 
solution is the one which has the smallest phase plane of 
isolated states.  

  
CASE STUDY: A SYSTEM WITH 3 COLLOCATED 
ACTUATORS AND SENSORS 

A simple lumped longitudinal vibration system has 
been considered as Figure 1 and the minimum energy 
eigenstructure assignment using mode orthogonalizing method 
has been applied in order to isolate the left side of the system 
from the vibration.  

Figure 1. The system of 10 masses with interconnecting 
springs and dampers. 

 
The system consists of 10 masses which are 

interconnected by springs and dampers as indicated in Figure 
1. The goal is to isolate 1 5m −  while a chirp input is applied 

to 9 10m − .Location of the actuators separates the isolated area 
from the disturbed area. 

It is assumed that all the masses are equal to 50 kg . 
Also, all the spring coefficients are identical and are equal to 
1000 /N m . Damping coefficients are assumed to be 
10 . /N s m . 
 

The core of the minimum modal energy algorithm is 
the control of the system in such a way that the closed-loop 
eigenvectors become orthogonal to the open-loop ones. This 
procedure is explained using a few examples. 
Considering this system to have three pairs of collocated 
actuators and sensors which are located on 6m , 7m  and 8m . 

All the element of the B  and C  matrices in equation (1) are 
zero except  
 

(16,1) (17, 2) (18,3) 1/ 50B B B= = = −  
(1,6) (2,7) (3,8) 1C C C= = =  

Operating eigenvalues, based on the step 1 of the 
procedure are 1λ , 3λ  and 5λ . Therefore the problem is finding 

the appropriate 1r , 2r  and 3r  for 1 1
12V r  , 2 2

12V r and 3 3
12V r , 
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respectively. Two different cases with different values for 
ir associated with each operating eigenvalues are considered.  

 
Case 1: 

1 1
3r U= , 2 2

3r U= and 3 3
3r U= , which gives the zero gain 

matrix. The closed-loop system is a regeneration of the open-
loop system. 
 
Case 2: 

1 1
2r U= , 2 2

1r U= and 3 3
1r U= , which generates the best 

vibration confinement. 
 

For case 1, with the first open-loop eigenvalue, 1λ , 
the following equations can be written 
 

1* 1
12 12

0.4137 -0.3793 0.3140
-0.3793 0.3479 -0.2881
0.3140 -0.2881 0.2387

V V
⎡ ⎤
⎢ ⎥= ⎢ ⎥
⎢ ⎥⎣ ⎦  

 

1 1 1*

0.3723 -0.6692 0.6431 0 0 0.3723 0.7982 0.4737
0.7982 -0.1228 -0.5898 0.0002 -0.6692 -0.1228 0.7329
0.4737 0.7329 0.4884 0 1 0.6431 -0.5898 0.4884

U U
⎡ ⎤ ⎡ ⎤ ⎡ ⎤
⎢ ⎥ ⎢ ⎥ ⎢ ⎥= Λ = ⎢ ⎥ ⎢ ⎥ ⎢ ⎥
⎢ ⎥ ⎢ ⎥ ⎢ ⎥⎣ ⎦ ⎣ ⎦ ⎣ ⎦

 
Also  
 

1* 1
22 22

0.5863 0.3793 -0.3140
0.3793 0.6521 0.2881
-0.3140 0.2881 0.7613

V V
⎡ ⎤
⎢ ⎥= ⎢ ⎥
⎢ ⎥⎣ ⎦  

 

1 1 1*

0.3723 -0.6692 0.6431 1 0 0.3723 0.7982 0.4737
0.7982 -0.1228 -0.5898 0.9998 -0.6692 -0.1228 0.7329
0.4737 0.7329 0.4884 0 0 0.6431 -0.5898 0.4884

wU U
⎡ ⎤ ⎡ ⎤ ⎡ ⎤
⎢ ⎥ ⎢ ⎥ ⎢ ⎥= Λ = ⎢ ⎥ ⎢ ⎥ ⎢ ⎥
⎢ ⎥ ⎢ ⎥ ⎢ ⎥⎣ ⎦ ⎣ ⎦ ⎣ ⎦

 
It is seen that the eigenvectors of the 1* 1

12 12V V  and 
1* 1
22 22V V are equal and also 

 

1 1

1 0 0 0 1 0
0.9998 0.0002 1

0 0 0 1 0 1
w

⎡ ⎤ ⎡ ⎤ ⎡ ⎤
⎢ ⎥ ⎢ ⎥ ⎢ ⎥Λ + Λ = + =⎢ ⎥ ⎢ ⎥ ⎢ ⎥
⎢ ⎥ ⎢ ⎥ ⎢ ⎥⎣ ⎦ ⎣ ⎦ ⎣ ⎦

 
 

If the first column eigenvector matrix is chosen, the 
first column of W becomes zero. 

 

1 1 1 1
22 22 3

0.5872 0.3793 -0.3151 0.6431 0
0.3785 0.6521 0.2890 -0.5898 0
-0.3135 0.2881 0.7606 0.4884 0

V r V U
⎡ ⎤ ⎡ ⎤ ⎡ ⎤
⎢ ⎥ ⎢ ⎥ ⎢ ⎥= = =⎢ ⎥ ⎢ ⎥ ⎢ ⎥
⎢ ⎥ ⎢ ⎥ ⎢ ⎥⎣ ⎦ ⎣ ⎦ ⎣ ⎦  

Similar results can be found for 3λ  and 5λ . 

W becomes a zero matrix which leads to a zero gain matrix 
and, the open-loop and closed-loop systems become identical 
 

For case 2, which is the most efficient closed-loop 
system, the following equations can be written 

 
1 1 2 2 3 3

12 2 12 1 12 1[ ] [ ] [ ]V V U V U V U⎡ ⎤= ⎣ ⎦     

1 1 2 2 3 3
22 2 22 1 22 1[ ] [ ] [ ]W V U V U V U⎡ ⎤= ⎣ ⎦    

 
and real gain matrix is 
 

1 3

-1.3205 -0.8670 -0.1337
( ) 1.0 10 1.5734 -1.5268 0.1758

0.7264 -1.0190 -0.8965
K W CV −

⎡ ⎤
⎢ ⎥= = × ⎢ ⎥
⎢ ⎥⎣ ⎦

 

 
Figure 2 shows the displacements of the masses due 

to a chirp input which rises from 0 to 100 N  in 1 second and 
then becomes zero. Inputs are applied to 9m and 10m while 

the actuators and sensors are on 6,7,8m . A great isolation can 

be seen on 1 5m − . Because of vibration confinement, the energy 
that entered the system does not propagate beyond the 
actuators. The displacement of 9 10m − that belong to the 

confined are increased. 7,8m  have almost similar amplitude of 

vibrations as open-loop system, but 6m which carries the 
inner actuator has shown an isolated behavior. 
 

The time histories of the displacement of 1m  are 
presented in Figure 3 for different cases. A unit impulse input 
is applied on 10m . It is seen that the closed-loop response of 

1y  is the same as the open-loop response in case 1, while 
vibration is isolated in case 2. 

 
Eigenvalues of the closed-loop system as well as the 

open-loop ones are presented in Figure 4. For both case 1 and 
case 2, the averages of the poles are -0.3. The reason is that 
the state matrices A and A BKC+  have the same diagonal 
elements. Because of the collocation of the actuators and 
sensors, the product BKC  has zero elements on its diagonal. 

 
 
Figure 5 shows the frequency responses of the 

masses due to the input at m9. Frequency responses and the 
frequencies are in logarithmic scales. It can be seen that the 
magnitudes of the responses of m1-8 for the closed-loop system 
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are significantly smaller than those of the open-loop system at 
a range of frequency which consists of all the natural 
frequencies of the open-loop and closed-loop systems. The 
frequency responses, however, for the closed-loop system are 
larger than the open-loop ones at the frequencies larger than 
the largest natural frequency of the system. For example, at a 
frequency of about 20 rad/s, frequency response y1 of the 
closed-loop system becomes larger than the open-loop 
response, while the maximum natural frequencies of the open-
loop and closed-loop systems are 8.85 rad/s and 9.23 rad/s 
respectively. At this frequency, the amplitude of the response 
is too small and negligible.  
 
CONCLUSION 

 The eigenstructure assignment method that is 
introduced here minimizes the modal energy of the closed-
loop system, by orthogonalizing the closed-loop system 
eigenvectors to the open-loop system ones. This method is an 
output feedback control that can be applied to linear time 
invariant systems. The actuators and the sensors need to be 
collocated. This method uses the singular value decomposition 
to find the null space of the eigenvectors of the closed-loop 
system. 

Conventional eigenstructure assignment methods 
need to define the desirable eigenvectors. Usually the 
desirable eigenvectors do not lie within the admissible sub-
space of the eigenvectors, therefore some errors are 
unavoidable. Minimum modal energy ESA does not require 
defining the desirable eigenvectors. This method finds closed-
loop systems that their eigenvectors are within admissible 
eigenvector subspace which 

  
are orthogonal to the open loop eigenvectors. As a result the 
isolation is not depended on the type of the disturbance. Also, 
this new method does not specify a location for the closed-
loop eigenvalues; therefore the extra constraints are not 
imposed to the actuators and the actuation forces can be 
reduced. In summary this method does not need any 
prediction about the closed-loop behavior and the results of 
the identification of the open-loop systems are the only data 
that are used in the design of the control algorithm. 
 

It has been shown that the vibrational energy is being 
confined to the designated area, and the desired area has been 
successfully isolated while the amplitude of vibration in the 
confined area has been increased. Since the actuators and 
sensors are collocated, this method keeps the average of the 
closed-loop eigenvalues the same as open-loop ones. 

 
Figure 2. Displacement of the masses for open-loop and 

closed-loop systems due to a chirp input to m9-10 

Figure 3. a- displacement of m1 for regenerated system, case1, 
b- comparison of displacements of m1, case 2 

 
Figure 4. Eigenvalues of the closed-loop and the open-loop 

systems 
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Figure 5. Frequency response of the masses for open-loop and closed-loop systems due to an input to 9m  
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