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"BSTRACT _

his paper presents the stability theory and dyna.tmc
chavior of a micro- -mechanical parametrlc-effect
esonator The device is a MEMS time-varying capacitor.
he nonlinear dynamics of the MEMS are investigated
analytically, and numerically. Applying perturbation
methods, and deriving an analytical equation to describe
the frequency response of the system enables the designer
o study the effect of changes in the system parameters
liat can be used for design and optimization of the
ystem.

NTRODUCTION

he micro-machining field, known as micro-electro-
miechanical systems (MEMS), is microscopic mechanical
ystems coupled with electronic circuits. Every MEMS
enerally has an input transducer, a mechanical resonator
nd an output transducer. In this investigation, a MEMS
with variable capacitor is studied.

Mathematical model of micro-mechanical resonator
ndicates a nonlinear parametric system. Their governing
quation is parametric and hence, ‘the stability of the
tem depends on the value of its parameters. From a
\:EQSign viewpoint, a stability chart is needed to indicate
he relationship between the parameters to determine
en the system is stable, periodic, or unstable. MEMS is
tined to become a hallmark 2lst-century
ufacturing technology with numerous and diverse
Pplications, having a dramatic impact technology.
amples of likely MEMS applications are medical
trumentation for in-body surgery, hearing aids, air-bag
sors, micro pumps and optics and tilting mirrors for
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projection devices [1]. As this breakthrough technology
allows unparalleled synergy between hitherto unrelated
fields of endeavor, MEMS is forecast to have a
commercial and defense market growth rate similar to
that of its parent IC technology [2].

In this paper, a model of MEMS, shown in Figure 1, will
be analyzed. The governing equation of the MEMS is a
nonlinear parametric equation. Using perturbation
methods and Energy-Rate method [3], the stability of the
system indicating boundaries of stable and unstable
regions is studied.
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Figurel. A simplified time-varying mechanical model of
the MEMS
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MODELING .
A model for the MEMS is shown in Figure 1. The fixed
plate of the capacitor with area A, connected to an

alternating current voltage v, =vsin(w¢). v;, and o, are

the AC amplitude, and frequency respectively. The
moving plate of the capacitor is a plate with mass m. The
supporting suspension of the moving plate is simplified as
a nonlinear spring of stiffnessk =k, +4,x°, parallel to a

linear damper of damping ¢. The moving plate, might be
connected to a polarization voltage v,.

The coordinate used to measure the displacement of the
moving plate is x, and the equation of motion for the
mechanical resonator in the MEMS would be:

mi +ex +kx =f 1)

where, the electric force fis

2
=30A(v—vp) g4
2(d-x)  2(d-x)

x[vﬁ +§v,.2 +2vpv,sin(wt)—-§—vfcos (th)} (2)

_soAvf,
2d*

€0 as the permittivity in vacuum, d is the gap size, and 4
is the area of the plate. A more detailed calculation of m,
¢, and k are presented in [1]. Introducing a set of
variables, we may transform the equation of motion to the
following form

y " rhy'+y +hy’ = ! 5
(1-») 3)
X[(OH—B)+2\/2aﬁsin(rr)—ﬁcos (2!"1:)]v0t
where
k, X W
'sznt 0, =4 Yy == ==
m d o,
c g,4 g,A4
Tom Cuat P @

2fTap=Sd, L, kg
k,d k,
Polarization voltage changes the static position of m.
Assuming a linear spring, £ =k, the equilibrium position

of the system is at the roots of y (1 -y )’ =«a.

Assuming no polarization voltage, simplifies the °
electromagnetic force and reduces the equation of motion |
to :

I
[B—Bcos (2r7)] 5) |

“Lhy'+y iy’ =
y y Ty tAY (I = )2
The stable point y=0 is the only equilibrium point of the |
system (5) in absence of alternative voltage. Therefore, its :
dynamic is much simpler. No polarization model of the
MEMS is what Napoli et. al. [4] have used to study the -
parametric resonance of the system. !
The investigation method is to create and apply a reliable
nondimensionalized mathematical model of the MEMS 3
that will provide key dynamic properties of the system.

ANALYSIS OF LINEAR MODEL WITH |
POLARIZATION VOLTAGE MODEL '
Series expansion of the nonlinear part of Equation (3)-

indicates that:

i

(I—vy)z =1+2y +3y2+4y3+0(y4).

Assuming y << converts the equation of motion to

y"+hy'+ _
(1—2]3—20t+2[3cos(2r1:)—4 Zafsin(2r7))y . (7
= 2Bsin’ (r1)+ 22 0B sin (r1)

It can be shown that applying averaging method provide
the following frequency response.

4B rt 4B 4 (4 (BHa)+h’ -2)
+2B°7 (1 -p-20)(1 -3B-2a)
~16BY Z[Ja(u—r2Y2)+a(1—B—2a)Y2 —a};

- (8
A plot of Equation (8), shown in Figure 2, indicates th
polarization voltage make the system vibrate as a w
behaved resonator. Since nonlinearities are ignored, th
would be no jump in steady state response of the ME
The frequency response is stable in this case. The ¢
of varying parameters B and o arc plotted in Figuresy
and 4 respectively.
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Figure 2. Frequency response of the linearized MEMS

with polarization for a set of parameters
a=0.1
h=0.3
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Figure 3. Frequency response of the linearized MEMS
with polarization for a set of parameters

h=0.3

06 08 1 L2 14 14
Ia

0.4

0 02

Figure 4. Frequency response of the lincarized MEMS
with polarization for a set of parameters
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ANALYSIS OF LINEAR AND WITH NO
POLARIZATION VOLTAGE MODEL

Series expansion of the nonlinear part of Equation (3)
indicates that:

=142y +3p +4y  10O(y?).

7=

®

(7-»)

Assuming y <</ converts the equation of motion to a
forced Mathieu differential equation

y"+hy ’+(1 —2B+2Bcos (2r1))y

10
=2Bsin’ (1) (10)

The transition curve in the stability plane »p after
applying averaging method is
257 =21 -4

B =i (1= 2p)4p (1)

Since »* € R, then 2 must be within

2—4B—23B° +1—4B <k’
W <2 —dp+2\3p7 +1-4B

to have a transition curve. The transition curves and
boundary of stability for the first instability tongue are
plotted in Figure 5 for different value of 4. As expected,
the instability domain shrinks by increasing damping,
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" Figure 5. Transient curves and instability tongue for
linear and no polarization model of the MEMS.

Copyright © 2004 by ASME



Applying = Poincare-Lindstad  method provides the
following equations for no damping transition curves

B, =1—r’ +O(r')

T

, (12)
B, =;*'§-+0(F J

which are in agreement with Equation (11) and Figure 6.
When the transient curves in parametric plane p-r are
determined by averaging or Poincare-Lindstad methods,
the stable and unstable regions can be determined by
investigating time response of a picked point.
Selecting(#,B) =¢(0.2,0.1), (0.9, 0.1), and (1.2, 0.1) in
the three regions divided by curves given in (12} for A=0,
generates the time responses shown in Figure 5.

Although Equations (11) and (12) determine the periodic
curves in the B-r parameter space around B=0, and r=1,
perturbation methods cannot determine a global stability
regions. Applying Energy-Rate method provides an exact
stability diagram shown in Figure 5, [4]. In Figure 6, the
parameter p is plotted against //r to provide a better view
for r<1.

As can be scen in Figure 6, the lincar no-polarization
model of the MEMS has a complicated stability diagram,
although there might be some limits for acceptable
domain of P and r due to physical restrictions.

s
o1
o 5 |U
" a

/A
5 & d:ﬁ 5
1y

Figure 6. Stability diagram for linear and no polarization
model of the MEMS
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Figure 7. Time response of the linear and no-polarization:

model of the MEMS for some points of the parameter
plane

The stability characteristic of regions in Figure 6 is

obvious by investigating time responses (curves) in :
Figure 7. It can also be determined by direct numerical
simulation. The principal instability region connected to
1/r=1I is more important, and is what the perturbation
method could predict approximately.
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