
 

Page 1
Proceedings of IMECE 2003: 
2003 ASME International Mechanical Engineering Congress and R&D Expo 

November 15-21, 2003, Washington, D.C., USA 
 

 
 

VEHICLES AND NONLINEAR SUSPENSIONS  
 

  
Nakhaie Jazar G. Mahinfalah M.  Rastgaar Aagaah M. 

Reza.N.Jazar@ndsu.nodak.edu M.Mahinfalah@ndsu.nodak.edu  Aagaah.Rastgaar@ndsu.nodak.edu 
  

North Dakota State University 
Department of Mechanical Engineering and Applied Mechanics, Fargo, North Dakota 58105, USA 

 
and 

 
Fahimi F. 

Farbod.Fahimi@villanova.edu 
 

Villanova University, Department of Mechanical Engineering, Villanova, Pennsylvania 19085, USA  
 

KEYWORDS: Nonlinear Suspensions, Vehicle Dynamics, Periodicity Conditions, Fixed Point Theorem,  

Proceedings of IMECE’03 
2003 ASME International Mechanical Engineering Congress 

Washington, D.C., November 15–21, 2003 
 
 

IMECE2003-42439
 

 

ABSTRACT 
An independent suspension for conventional vehicles has been 
modeled as a nonlinear vibration absorber with a nonlinear 
third-order ordinary differential equation. In order to obtain 
conditions that guarantee existence of periodic solutions and 
stable responses, the Schauder's fixed-point theorem has been 
implemented to prove a third-order solution existence theorem 
for general third-order differential equations.  

A numerical method has been developed for rapid 
convergence, and applied for a sample model. The correctness 
of sufficient conditions and solution algorithm has been shown 
with appropriate figures. 

 
INTRODUCTION 
One of the most important characteristics and problems of car 
suspension is that only a fixed and limited suspension working 
space is available, and that such vehicles have to traverse on 
road surfaces of widely differing roughness. These results make 
it clear that the chief limitation of conventional fixed parameter 
passive suspension systems arise from the need of compromise 
in choice of parameters. They must be chosen according to the 
opposite demands of smooth and rough surfaces, vehicle 
attitude and load changes, and maneuvering and high speed 
handling quality (Sharp and Hassan 1986).  

In order to facilitate such compromise, the relationship 
between the extent of the stiffness and damping variations must 
be provided and the performance gains must be obtained 
(Pacejka 1986). Using nonlinear springs might be a way to 
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overcome some of the limitations. With nonlinear elements, the 
simplicity and stability of the system will change and therefore, 
its behavior should be analyzed. 

The assumption of linear behavior of mechanical elements 
simplifies the solution considerably but it is too ideal for most 
real systems. Nonlinear dynamical systems, which are a more 
realistic representation of nature, could exhibit a somewhat 
complex behavior. Their analysis requires a thorough 
investigation of the solution of the nonlinear governing 
differential equations, which usually do not provide any exact 
solutions and therefore must be solved numerically.  

Perhaps, the most important problem in the study of 
nonlinear dynamical systems is to obtain conditions that 
guarantee the existence of periodic solutions, and hence 
calculate these solutions by implementing suitable numerical 
techniques. The significance of periodic solutions lies on the 
fact that these solutions represent the steady state response of 
the system. 

We have modeled the front suspension system of 
conventional vehicles as nonlinear dynamic vibration absorber 
systems using a third-order ordinary differential equation. 
Then, we have attempted to obtain sufficient conditions for 
periodicity of the corresponding system responses using 
Schauder's fixed-point theorem. After obtaining the periodicity 
conditions, we have solved the system numerically. The 
obtained numerical solutions not only demonstrate the response 
of the system, but also offer a way to check whether the 
proposed sufficient periodicity conditions are valid. 
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VIBRATION OF VEHICLES WITH NONLINEAR 
SUSPENSION 
Figure 1 represents the essential parts of the front suspension of 
a motorcar. The unsprung mass consists of the tire, the wheel, 
and the stub axle, and is connected to a hydraulic shock 
absorber and the main spring by a rubber bushing. The other 
end of the shock absorber is connected to the sub-frame of the 
car body by another rubber bushing. One wishbone arm at each 
end serves to stabilize the unit. 

This mechanical system can be considered as a two degree-
of-freedom dynamical system. The tire stiffness is assumed to 
be large enough compared to that of the main spring, and hence 
the suspension system can be simplified in the form of a single 
degree-of-freedom system (Esmailzadeh 1978). 

Let x, y and z represent the body motion, wheel excitation, 
and the displacement at the connection point of the rubber 
bushing and the hydraulic shock absorber respectively as 
shown in Figure 2. Then, the equations of motion may be 
written as: 

 
1 2k ( x y ) k ( x z ) mx ′′− − − − =   (1) 

2k ( x z ) c( z y )′ ′− = −    (2) 
 

In order to obtain the relation between the input 
displacement y and the output motion x, the variable z should 
be eliminated between equations (1) and (2). Thus, 

 
[ ]1 2 1

2

mx ( k k ) x k y )
z

k
′′ + + −

=   (3) 

 
Substituting equation (3) in (2) we obtain, 
 

2 1 2 1 2 1 2 1 2k k k k k k k k kx x x x y
c m mc m mc

+ +′′′ ′′ ′ ′+ + + = + y    (4) 

 
If a periodic profile is assumed for the road and the vehicle 

is traveling at a constant speed, the input displacement y can be 
well represented by a periodic function. 

In the case of linear springs and dampers, the solution of 
this third-order differential equation could be easily obtained. 
However, due to nonlinear behavior of real mechanical springs 
and shock absorbers, such an over-simplification is not always 
realistic. For the proposed model with nonlinear elements, a 
third-order nonlinear differential equation is obtained. 

Experiments show that with relatively large displacements, 
the spring rate may be expressed as: a+bδ2, where a is a 
positive constant. For a hard spring, the constant factor b is also 
positive. On the other hand, for the case of a soft spring b ought 
to be negative. The factor δ represents the relative displacement 
of the two ends of the considered spring. Hence, for the main 
spring,  δ = x – y. 
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Let’s consider both k1 and k2 be nonlinear functions of x, 
and c be a function of x'. For this special case, equation (4) will 
have the following general form, 

1 2x g ( x ) x g ( x ) x g( x , x ,t ) e( t )′′′ ′ ′′ ′ ′+ + + =  (5) 
 

where 
2 1

1 2

1 2 1 2 1 2

k kg ( x ) g ( x )
c M
k k k k k k

2k

g( x , x ,t ) e( t ) x y y
mc m mc

+′ = =

+′ ′− = − −
  (6) 

 
As an example, we study a system with all elements being 

linear except the main spring k1. Hence, assuming k1=a+bδ2, 
δ=x–y, one may write equation (4) as: 

 
22 2

22 2

2 22 2 2

k a k bx x x ( x y ) x
c m mc
ak bkx ( x y ) x
mc mc

a k ak bkby ( x y ) y y ( x y )
m m mc mc

+′′′ ′′ ′ ′+ + + −

+ + − =

+ ′ ′+ − + + − y

    (7) 

 

MATHEMATICAL ANALYSIS 
Consider the following classes of nonlinear differential 
equations: 
 

1x g ( x ) x g( x , x ,t ) e( t )′′ ′ ′+ + =    (8) 

1 2x g ( x ) x g ( x ) x g( x , x ,t ) e( t )′′′ ′ ′′ ′ ′+ + + =  (9) 
 

Equation (8) is a second-order nonlinear differential 
equation, whose periodic solutions are discussed (Mehri, 
Esmailzadeh, and Nakhaie Jazar 1996). Equation (9) is a third-
order nonlinear differential equation that is an extension to 
Equation (8). In general case, the exact solution of equation (9) 
is not known. Hence, various numerical techniques should be 
utilized to determine its approximate periodic solutions. 
However, the Schauder's fixed-point theorem enables us to find 
the existence conditions of periodic solutions, without 
evaluating such answers. It is interesting to note that the 
conditions that ensure the existence of periodic solutions for 
equation (8) are also valid for equation (9). This fact is 
discussed later. 

Let us consider equation (9). The aim is to obtain 
conditions for the periodicity of solution that has the same time 
period as that of the input excitation. The method presented 
here is based on the Schauder's fixed-point theorem (Nakhaie 
Jazar and Golnaraghi 2002).  
Assume that g and e are periodic functions of t. The necessary 
and sufficient condition for equation (9) to have a periodic 
solution x with the same time period τ as e is: 
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( i ) ( i )x ( 0 ) x ( ) i 0 ,1 , 2= τ =    (10) 
where (i) indicates the i-th time derivative. If we introduce the 
Green's function G(t,s), the solution of equation (9) can be 
expressed as: 
 

( ) ( )

( )

1 2
0

x ( t ) G( t ,s ) g x ( s ) x ( s ) g x ( s ) x ( s )

g x ( s ), x ( s ),s e( s ) ds

τ

′ ′′ ′= +

′+ − 

∫    (11) 

Assume that the forcing function has the following property:  
 

0

e( t )dt 0
τ

=∫      (12) 

 
Now, by combining equation (12) with equation (11), one 

can state that the periodicity condition (10) can be satisfied, if g 
satisfies the following condition: 

 

( )0
0

g x ( s ), x ( s ),s ds 0
τ

′ ′ =∫    (13) 

 
where x0(t) is the periodic solution to equation (9). Equation 
(13) expresses the sufficient condition for periodicity of the 
solution to equation (9). In order to find conditions that ensure 
the existence of x0(t) which satisfies equations (11) and (13), 
the Schauder's fixed-point theorem may be applied. 

Let C[0,τ] be the space of all differentiable functions on 
[0,τ] equipped with the following norm: 

 
{ }x Max x ( t ) ; t [0 , ]= ∈ τ    (14) 

 
The complete normed linear space B can be defined in the 

following form: 
 

B C [0 , ] C [0 , ] C [0 , ] R= τ × τ × τ ×   (15) 
 

The norm of B elements can be defined as: 
 

( x , x , x , h ) x x x h′ ′′ ′ ′′= + + +   (16) 
 

On the space B, the operator U can be defined as following: 
 

U ( x , x , x , h ) ( x , x , x , h )′ ′′ ′ ′′=    (17) 
where 

( )

( ) ( )

( i ) ( i ) ( i )
1

0

2

x ( t ) h G ( t ,s ) g x ( s ) x ( s )

g x ( s ) x ( s ) g x ( s ), x ( s ),s e( s ) ds

τ

′ ′′= + + 

′ ′+ + − 

∫


 (18) 
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(
0

1h h g x ( s ), x ( s ),s ds
τ

′= −
τ ∫ )    (19) 

Hence, the operator U represents a continuous mapping 
from B into itself. A closed convex subset of B can be defined 
as:  

 
( ){

( )}
S x , x , x ,h B ;

x K x K x K h v 2 m

′ ′′= ∈

′ ′′≤ + ≤ + ≤ + ≤ +
 (20) 

 
where 
 

x v ; v 0 ; t [0 , ]≥ ≥ ∈ τ    (21) 

{ }0 1 2N Max MM , MM , MM , F= τ τ τ  (22) 

{ }F Max g( x , x ,t ) ;t [0 , ], x K′= ∈ τ ≤   (23) 

( ){
( ) ( )

}

1

2

( i )

M Max g x ( t ) x ( t )

g x ( t ) x ( t ) g x ( t ), x ( t ),t e( t ) ;

t [0 , ], x K , i 0 ,1 , 2

′ ′′= +

′ ′+ + −

∈ τ ≤ =

 (24) 

i

i i

G( t ,s )M Max ;( t ,s ) [0 , ] [0 , ]
t

i 0 ,1 ,2

 ∂ = ∈ τ × τ 
∂  

=

 (25) 

 
If it is shown that the operator U has a fixed point in the set S, 
there is a function x0 for which 
 

0 0 0 0 0 0 0 0U ( x , x , x , h ) ( x , x , x ,h )′ ′′ ′ ′′=   (26) 
 

Considering equations (18) and (19), one can see that x0 
must then satisfy both equations (11) and (13). Consequently, 
x0 will be the desired periodic solution of equation (9). 
According to the Schauder's fixed-point theorem, existence of a 
fixed point is proved if: 
 

U ( S ) S⊂      (27) 
 

It can be shown that if v + 3 N < K, for any  
 

( x , x , x , h ) S′ ′′ ∈      (28) 
 

its corresponding transformation, (  is also a 
member of S and the proof is completed. Regarding the 
foregoing discussion, a theorem can be deduced: 

x , x , x ,h )′ ′′

 
Third Order Periodic Theorem: For a differential equation 
in the form of equation (9) with periodicity conditions given by 
equation (10), there exists at least one solution with the same 
time period τ as that of functions g and e  provided that: 
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v 3 N K ; xg( x , x ,t ) 0 , t [0 , ]′+ ≤ > ∈ τ  (29) 

PERIODICITY CONDITION FOR VIBRATION OF 
VEHICLE SUSPENSION 
Assume that the input excitation of the system with equation 
(7) is y = y0 cos(2πt). Then the sufficient condition (23) for 
periodicity of the response of the system with v = 0 is 
 

22 2 2
0

22
0 0 0

22 2
0 0 0

k a k akbK K K ( K y ) K
c m m mc
a k b( 2 y ) ( K y ) ( 2 y )

m m
ak bk Ky ( K y ) y
mc mc 3

+
+ + + +

+
+ π + − π

+ + − <

+

+  (30) 

 
Consider the following numerical values: 
 

2k 100= kgf cm  
c 1000= kgf s cm⋅  
a 500= kgf cm  
m 5000= kg  
b 10= 3kgf cm  

0y 0.= 1 cm      (31) 

 
it may be verified that inequality (29) is being satisfied for 
K=0.76. 
 
NUMERICAL PROCEDURE 
Now, we are certain that a periodic solution exists. The next 
step is to calculate this solution by use of numerical methods. 
The differential equation is assumed to have the form 
 

x g( x , x , x ,t ) e( t )′′′ ′ ′′+ =    (32) 
 

in which all explicit functions of time are assumed to be 
periodic with period τ. The purpose of the present discussion is 
to calculate solutions of equation (32) that are periodic with the 
same period τ. Hence, such a solution should satisfy the 
boundary conditions (10). 

Regarding the foregoing explanations, the problem reduces 
to finding proper values for  

 
x ( 0 ) x ( 0 ) x ( 0 )′ ′′α = β = γ =   (33) 

 
such that the corresponding solution of equation (33) satisfies 
the following set of algebraic equations: 
 

( , , ) x ( , , , ) 0
( , , ) x ( , , , ) 0
( , , ) x ( , , , ) 0

ϕ α β γ = α β γ τ − α =
′θ α β γ = α β γ τ − β =
′′ψ α β γ = α β γ τ − γ =

   (34) 
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Now, one should guess (α0,β0,γ0) as the initial conditions. 

Then equation (33) can be solved numerically to evaluate x(τ), 
x'(τ), x"(τ). The validity of the initial guess may be checked 
with the following criterion: 

 

0 0 0 0 0 0 0 0 0

0 0 0

( , , ) ( , , ) ( , , )ϕ α β γ θ α β γ ψ α β γ
+ + <

α β γ
ε     (35) 

 
where ε is a convergence tolerance. If it is valid, then 
(α0, β0, γ0) will be the proper set of initial conditions and the 
corresponding solution of equation (33) will be τ-periodic. If it 
is not valid, the Newton-Raphson method can be applied to 
obtain a more feasible set of initial conditions (α1, β1, γ1), such 
that 

1 0 1 1 0 1 1 0 1, ,α = α + ∆α β = β + ∆β γ = γ + ∆γ  (36) 
Using Taylor series expansions and neglecting all second 

and higher order terms, one obtains 
 

1 1 1 0 0 0 1 1 1

1 1 1 0 0 0 1 1 1

1 1 1 0 0 0 1 1 1

( , , ) ( , , )

( , , ) ( , , )

( , , ) ( , , )

∂ϕ ∂ϕ ∂ϕ
ϕ α β γ ≈ ϕ α β γ + ∆α + ∆β + ∆γ

∂α ∂β ∂γ
∂θ ∂θ ∂θ

θ α β γ ≈ θ α β γ + ∆α + ∆β + ∆γ
∂α ∂β ∂γ
∂ψ ∂ψ ∂ψ

ψ α β γ ≈ ψ α β γ + ∆α + ∆β + ∆γ
∂α ∂β ∂γ

(37) 
 

where all derivatives are calculated at (α0, β0, γ0). According to 
equations (35), the proper set of increments ∆α1, ∆β1, ∆γ1, shall 
be calculated through solution of equations (37) with zero right 
hand sides. Finally, equation (37) is used to provide the 
improved initial conditions. This procedure should be repeated 
until the proper set of initial conditions, satisfying inequality 
(36), is obtained. 

For calculating the derivatives in equation (37) effectively, 
one may find the following relations by using equations (35): 

 
x ( , , ) x x1

x ( , , ) x x1

x ( , , ) x x 1

∂ϕ ∂ α β γ ∂ϕ ∂ ∂ϕ ∂
= − = =

∂α ∂α ∂β ∂β ∂γ ∂γ
′ ′ ′∂θ ∂ α β γ ∂θ ∂ ∂θ ∂

= = − =
∂α ∂α ∂β ∂β ∂γ ∂γ

′′ ′′∂ψ ∂ α β γ ∂ψ ∂ ∂ψ ∂ ′′
= = =

∂α ∂α ∂β ∂β ∂γ ∂γ
−

 (38) 

 
The partial derivatives of x, x' and x" with respect to α, β 

or γ at any point are obtained by imposing perturbations on the 
corresponding initial conditions and then analyzing the effects 
of such perturbations in x(τ), x'(τ) and x"(τ). 
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RESULTS 
Figure 3 depicts the periodicity condition (29). With a 
computer program based on the foregoing numerical 
techniques, we have detected the feasible initial conditions for 
periodicity. Then, the time histories of x, x' and x" have been 
found and corresponding phase trajectory have been obtained. 
Figures 4-7 show the mentioned diagrams respectively. The 
parameters of the system have been chosen identical to the 
numerical values given in  (32) 

It is interesting to note that the x-x" diagram is in the form 
of a line segment passing through the origin, which is swept at 
each time period.  Hence, this solution seems to be a harmonic 
response. 

Proper initial conditions for periodic answer were 
computed as: 

 
4

6

2

x ( 0 ) 3.05928 10
x ( 0 ) 5.0073 10
x ( 0 ) 1.203694 10

−

−

−

= − ×

′ = ×

′′ = ×

    (39) 

 
for which: 
 

4

6

2

x ( 0 ) 3.05928 10
x ( 0 ) 5.0091 10
x ( 0 ) 1.203694 10

−

−

−

= − ×

′ = ×

′′ = ×

    (40) 

 
These compare very well with conditions (10), and are in 

agreement with the previously computed value of K. 
 
CONCLUSIONS 
A vehicle suspension was modeled as a nonlinear vibration 
system. Its governing deferential equation was explained by a 
nonlinear third-order differential equation. Existence of 
periodic and therefore, stable responses which is not an 
obvious feature for nonlinear systems must be guaranteed. Thus 
the sufficient conditions for existence of periodic solutions for 
a general class of third-order ordinary differential equations, 
which includes the equation of mentioned suspension, were 
obtained. It was shown that these conditions could be 
applicable for analyzing the steady-state behavior of the 
suspension system. Therefore, the suspension could have a 
periodic response with a constant amplitude, when the 
excitation of the road is harmonic.  

NOMENCLATURE 
gi, i=0,1,2 coefficient functions  
e(t)  forcing function 
C       continuous and differentiable functions 
x(t), x'(t), x"(t) state variables 
G(t,s)   Green's function 
S, B    Banach spaces 
K  bounded domain of phase space 
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U     operator 
M    maximum of a function in phase space 
t     time  
d, ∂     differential symbols 
'  (prime) d/dt 
ki, i=1,2  stiffness coefficients of springs 
c   damping coefficient of shock absorber 
m     mass 
τ      period 
ϕ, θ, ψ    error functions 
α, β, γ     initial conditions 
∆     increment in initial conditions 
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Figure 1. Main parts of a front suspension system 
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Figure 2. A model for vehicle suspension system 
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Figure 3. Graphical illustration of the periodicity condition  

 

 

 
Figure 4. Time history of the system for evaluated initial 

conditions  
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Figure 5. Phase plane trajectory for the periodic response of 

the system  
 

 
Figure 6. Plot of x x−  for the periodic response of the 

system  
 

 
Figure 7. Plot of x x−  for the periodic response of the 

system  
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